One-Parameter Scaling Theory for DNA Extension in a Nanochannel
نویسندگان
چکیده
Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions of current scaling arguments for the conformations of confined semiflexible polymers such as DNA. We show that a theory based on a weakly self-avoiding, one-dimensional "telegraph" process collapses experimental data and simulation results onto a single master curve throughout the experimentally relevant region of parameter space and explains the mechanisms at play.
منابع مشابه
The dynamics of genomic-length DNA molecules in 100-nm channels
We show that genomic-length DNA molecules imaged in nanochannels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA molecules confined in the channels, and th...
متن کاملThe Backfolded Odijk Regime for Wormlike Chains Confined in Rectangular Nanochannels
We confirm Odijk’s scaling laws for (i) the average chain extension; (ii) the variance about the average extension; and (iii) the confinement free energy of a wormlike chain confined in a rectangular nanochannel smaller than its chain persistence length through pruned-enriched Rosenbluth method (PERM) simulations of asymptotically long, discrete wormlike chains. In the course of this analysis, ...
متن کاملTransition between Two Regimes Describing Internal Fluctuation of DNA in a Nanochannel
We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50-100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in ~100 nm channels, we observe a critical length scale ~10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuati...
متن کاملFrom the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels.
We show that genomic-length DNA molecules imaged in nanochannels have an extension along the channel that scales linearly with the contour length of the polymer, in agreement with the scaling arguments developed by de Gennes for self-avoiding confined polymers. This fundamental relationship allows us to measure directly the contour length of single DNA molecules confined in the channels, and th...
متن کاملEntropic depletion of DNA in triangular nanochannels.
Using Monte Carlo simulations of a touching-bead model of double-stranded DNA, we show that DNA extension is enhanced in isosceles triangular nanochannels (relative to a circular nanochannel of the same effective size) due to entropic depletion in the channel corners. The extent of the enhanced extension depends non-monotonically on both the accessible area of the nanochannel and the apex angle...
متن کامل